redis知识
简介
简单来说 Redis 就是一个使用 C 语言开发的数据库,不过与传统数据库不同的是 Redis 的数据是存在内存中的 ,也就是它是内存数据库,所以读写速度非常快,因此 Redis 被广泛应用于缓存方向。
另外,Redis 除了做缓存之外,Redis 也经常用来做分布式锁,甚至是消息队列。
Redis 提供了多种数据类型来支持不同的业务场景。Redis 还支持事务 、持久化、Lua 脚本、多种集群方案
分布式缓存常见的技术选型方案
分布式缓存的话,使用的比较多的主要是 Memcached 和 Redis。不过,现在基本没有看过还有项目使用 Memcached 来做缓存,都是直接用 Redis。
Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来,随着 Redis 的发展,大家慢慢都转而使用更加强大的 Redis 了。
分布式缓存主要解决的是单机缓存的容量受服务器限制并且无法保存通用的信息。因为,本地缓存只在当前服务里有效,比如如果你部署了两个相同的服务,他们两者之间的缓存数据是无法共同的。
Redis 和 Memcached 的区别和共同点
现在公司一般都是用 Redis 来实现缓存,而且 Redis 自身也越来越强大了!不过,了解 Redis 和 Memcached 的区别和共同点,有助于我们在做相应的技术选型的时候,能够做到有理有据!
共同点 :
- 都是基于内存的数据库,一般都用来当做缓存使用。
- 都有过期策略。
- 两者的性能都非常高。
区别 :
- Redis 支持更丰富的数据类型(支持更复杂的应用场景)。Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储。Memcached 只支持最简单的 k/v 数据类型。
- Redis 支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而 Memecache 把数据全部存在内存之中。
- Redis 有灾难恢复机制。 因为可以把缓存中的数据持久化到磁盘上。
- Redis 在服务器内存使用完之后,可以将不用的数据放到磁盘上。但是,Memcached 在服务器内存使用完之后,就会直接报异常。
- Memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 目前是原生支持 cluster 模式的.
- Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型。 (Redis 6.0 引入了多线程 IO )
- Redis 支持发布订阅模型、Lua 脚本、事务等功能,而 Memcached 不支持。并且,Redis 支持更多的编程语言。
- Memcached过期数据的删除策略只用了惰性删除,而 Redis 同时使用了惰性删除与定期删除。
Redis 单线程模型详解
Redis 基于 Reactor 模式来设计开发了自己的一套高效的事件处理模型 (Netty 的线程模型也基于 Reactor 模式,Reactor 模式不愧是高性能 IO 的基石),这套事件处理模型对应的是 Redis 中的文件事件处理器(file event handler)。由于文件事件处理器(file event handler)是单线程方式运行的,所以我们一般都说 Redis 是单线程模型。
既然是单线程,那怎么监听大量的客户端连接呢?
Redis 通过IO 多路复用程序 来监听来自客户端的大量连接(或者说是监听多个 socket),它会将感兴趣的事件及类型(读、写)注册到内核中并监听每个事件是否发生。
这样的好处非常明显: I/O 多路复用技术的使用让 Redis 不需要额外创建多余的线程来监听客户端的大量连接,降低了资源的消耗(和 NIO 中的 Selector
组件很像)。
另外, Redis 服务器是一个事件驱动程序,服务器需要处理两类事件: 1. 文件事件; 2. 时间事件。
时间事件不需要多花时间了解,我们接触最多的还是 文件事件(客户端进行读取写入等操作,涉及一系列网络通信)。
Redis 持久化机制
很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后恢复数据),或者是为了防止系统故障而将数据备份到一个远程位置。
Redis 不同于 Memcached 的很重要一点就是,Redis 支持持久化,而且支持两种不同的持久化操作。Redis 的一种持久化方式叫快照(snapshotting,RDB),另一种方式是只追加文件(append-only file, AOF)。这两种方法各有千秋,下面我会详细这两种持久化方法是什么,怎么用,如何选择适合自己的持久化方法。
快照(snapshotting)持久化(RDB)
Redis 可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis 创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis 主从结构,主要用来提高 Redis 性能),还可以将快照留在原地以便重启服务器的时候使用。
快照持久化是 Redis 默认采用的持久化方式,在 Redis.conf 配置文件中默认有此下配置:
save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 300 10 #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
缓存雪崩
实际上,缓存雪崩描述的就是这样一个简单的场景:缓存在同一时间大面积的失效,后面的请求都直接落到了数据库上,造成数据库短时间内承受大量请求。 这就好比雪崩一样,摧枯拉朽之势,数据库的压力可想而知,可能直接就被这么多请求弄宕机了。
举个例子:系统的缓存模块出了问题比如宕机导致不可用。造成系统的所有访问,都要走数据库。
还有一种缓存雪崩的场景是:有一些被大量访问数据(热点缓存)在某一时刻大面积失效,导致对应的请求直接落到了数据库上。 这样的情况,有下面几种解决办法:
举个例子 :秒杀开始 12 个小时之前,我们统一存放了一批商品到 Redis 中,设置的缓存过期时间也是 12 个小时,那么秒杀开始的时候,这些秒杀的商品的访问直接就失效了。导致的情况就是,相应的请求直接就落到了数据库上,就像雪崩一样可怕。
有哪些解决办法?
针对 Redis 服务不可用的情况:
- 采用 Redis 集群,避免单机出现问题整个缓存服务都没办法使用。
- 限流,避免同时处理大量的请求。
针对热点缓存失效的情况:
- 设置不同的失效时间比如随机设置缓存的失效时间。
- 缓存永不失效。
RESTfulAPI设计指南
重要概念
REST,即 REpresentational State Transfer 的缩写。这个词组的翻译过来就是"表现层状态转化”。这样理解起来甚是晦涩,实际上 REST 的全称是 Resource Representational State Transfer ,直白地翻译过来就是 “资源”在网络传输中以某种“表现形式”进行“状态转移” 。如果还是不能继续理解,请继续往下看,相信下面的讲解一定能让你理解到底啥是 REST 。
我们分别对上面涉及到的概念进行解读,以便加深理解,不过实际上你不需要搞懂下面这些概念,也能看懂我下一部分要介绍到的内容。不过,为了更好地能跟别人扯扯 “RESTful API”我建议你还是要好好理解一下!
- 资源(Resource) :我们可以把真实的对象数据称为资源。一个资源既可以是一个集合,也可以是单个个体。比如我们的班级 classes 是代表一个集合形式的资源,而特定的 class 代表单个个体资源。每一种资源都有特定的 URI(统一资源标识符)与之对应,如果我们需要获取这个资源,访问这个 URI 就可以了,比如获取特定的班级:
/class/12
。另外,资源也可以包含子资源,比如/classes/classId/teachers
:列出某个指定班级的所有老师的信息 - 表现形式(Representational):“资源"是一种信息实体,它可以有多种外在表现形式。我们把"资源"具体呈现出来的形式比如 json,xml,image,txt 等等叫做它的"表现层/表现形式”。
- 状态转移(State Transfer) :大家第一眼看到这个词语一定会很懵逼?内心 BB:这尼玛是啥啊? 大白话来说 REST 中的状态转移更多地描述的服务器端资源的状态,比如你通过增删改查(通过 HTTP 动词实现)引起资源状态的改变。ps:互联网通信协议 HTTP 协议,是一个无状态协议,所有的资源状态都保存在服务器端。
综合上面的解释,我们总结一下什么是 RESTful 架构:
- 每一个 URI 代表一种资源;
- 客户端和服务器之间,传递这种资源的某种表现形式比如 json,xml,image,txt 等等;
- 客户端通过特定的 HTTP 动词,对服务器端资源进行操作,实现"表现层状态转化”。
REST 接口规范
1、动作
- GET :请求从服务器获取特定资源。举个例子:
GET /classes
(获取所有班级) - POST :在服务器上创建一个新的资源。举个例子:
POST /classes
(创建班级) - PUT :更新服务器上的资源(客户端提供更新后的整个资源)。举个例子:
PUT /classes/12
(更新编号为 12 的班级) - DELETE :从服务器删除特定的资源。举个例子:
DELETE /classes/12
(删除编号为 12 的班级) - PATCH :更新服务器上的资源(客户端提供更改的属性,可以看做作是部分更新),使用的比较少,这里就不举例子了。
2、路径(接口命名)
路径又称"终点”(endpoint),表示 API 的具体网址。实际开发中常见的规范如下:
- 网址中不能有动词,只能有名词,API 中的名词也应该使用复数。 因为 REST 中的资源往往和数据库中的表对应,而数据库中的表都是同种记录的"集合”(collection)。如果 API 调用并不涉及资源(如计算,翻译等操作)的话,可以用动词。 比如:
GET /calculate?param1=11¶m2=33
- 不用大写字母,建议用中杠 - 不用下杠 _ 比如邀请码写成
invitation-code
而不是invitation_code
Talk is cheap!来举个实际的例子来说明一下吧!现在有这样一个 API 提供班级(class)的信息,还包括班级中的学生和教师的信息,则它的路径应该设计成下面这样。
接口尽量使用名词,禁止使用动词。 下面是一些例子:
GET /classes:列出所有班级
POST /classes:新建一个班级
GET /classes/classId:获取某个指定班级的信息
PUT /classes/classId:更新某个指定班级的信息(一般倾向整体更新)
PATCH /classes/classId:更新某个指定班级的信息(一般倾向部分更新)
DELETE /classes/classId:删除某个班级
GET /classes/classId/teachers:列出某个指定班级的所有老师的信息
GET /classes/classId/students:列出某个指定班级的所有学生的信息
DELETE classes/classId/teachers/ID:删除某个指定班级下的指定的老师的信息
反例:
/getAllclasses
/createNewclass
/deleteAllActiveclasses
理清资源的层次结构,比如业务针对的范围是学校,那么学校会是一级资源:/schools
,老师: /schools/teachers
,学生: /schools/students
就是二级资源。
3、过滤信息(Filtering)
如果我们在查询的时候需要添加特定条件的话,建议使用 url 参数的形式。比如我们要查询 state 状态为 active 并且 name 为 guidegege 的班级:
GET /classes?state=active&name=guidegege
比如我们要实现分页查询:
GET /classes?page=1&size=10 //指定第1页,每页10个数据
4、状态码(Status Codes)
状态码范围:
2xx:成功 | 3xx:重定向 | 4xx:客户端错误 | 5xx:服务器错误 |
---|---|---|---|
200 成功 | 301 永久重定向 | 400 错误请求 | 500 服务器错误 |
201 创建 | 304 资源未修改 | 401 未授权 | 502 网关错误 |
403 禁止访问 | 504 网关超时 | ||
404 未找到 | |||
405 请求方法不对 |
Java多线程
使用线程池的好处
池化技术相比大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。
线程池提供了一种限制和管理资源(包括执行一个任务)。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。
这里借用《Java 并发编程的艺术》提到的来说一下使用线程池的好处:
- 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
- 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
- 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
Executor 框架
简介
Executor 框架是 Java5 之后引进的,在 Java 5 之后,通过 Executor 来启动线程比使用 Thread 的 start 方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免 this 逃逸问题。
补充:this 逃逸是指在构造函数返回之前其他线程就持有该对象的引用. 调用尚未构造完全的对象的方法可能引发令人疑惑的错误。
Executor 框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,Executor 框架让并发编程变得更加简单。
Executor 框架结构
1) 任务(Runnable
/Callable
)
执行任务需要实现的 Runnable
接口 或 Callable
接口。Runnable
接口或 Callable
接口 实现类都可以被 ThreadPoolExecutor
或 ScheduledThreadPoolExecutor
执行。
2) 任务的执行(Executor
)
任务执行机制的核心接口 Executor
,以及继承自 Executor
接口的 ExecutorService
接口。ThreadPoolExecutor
和 ScheduledThreadPoolExecutor
这两个关键类实现了 ExecutorService 接口。
3) 异步计算的结果(Future
)
Future
接口以及 Future
接口的实现类 FutureTask
类都可以代表异步计算的结果。
当我们把 Runnable
接口 或 Callable
接口 的实现类提交给 ThreadPoolExecutor
或 ScheduledThreadPoolExecutor
执行。(调用 submit()
方法时会返回一个 FutureTask
对象)
Executor 框架的使用示意
- 主线程首先要创建实现
Runnable
或者Callable
接口的任务对象。 - 把创建完成的实现
Runnable
/Callable
接口的 对象直接交给ExecutorService
执行:ExecutorService.execute(Runnable command)
)或者也可以把Runnable
对象或Callable
对象提交给ExecutorService
执行(ExecutorService.submit(Runnable task)
或ExecutorService.submit(Callable <T> task)
)。 - 如果执行
ExecutorService.submit(…)
,ExecutorService
将返回一个实现Future
接口的对象(我们刚刚也提到过了执行execute()
方法和submit()
方法的区别,submit()
会返回一个FutureTask 对象)。由于 FutureTask
实现了Runnable
,我们也可以创建FutureTask
,然后直接交给ExecutorService
执行。 - 最后,主线程可以执行
FutureTask.get()
方法来等待任务执行完成。主线程也可以执行FutureTask.cancel(boolean mayInterruptIfRunning)
来取消此任务的执行。
ThreadPoolExecutor 类简单介绍
线程池实现类 ThreadPoolExecutor
是 Executor
框架最核心的类。
ThreadPoolExecutor
类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么),这里就不贴代码讲了,比较简单。
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
ThreadPoolExecutor
3 个最重要的参数:
corePoolSize
: 核心线程数线程数定义了最小可以同时运行的线程数量。maximumPoolSize
: 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。workQueue
: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
ThreadPoolExecutor
其他常见参数:
keepAliveTime
:当线程池中的线程数量大于corePoolSize
的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了keepAliveTime
才会被回收销毁;unit
:keepAliveTime
参数的时间单位。threadFactory
:executor 创建新线程的时候会用到。handler
:饱和策略。
推荐使用 ThreadPoolExecutor 构造函数创建线程池
配置线程池参数
- CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
- I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
左连接 ,右连接,内连接和全外连接的4者区别
left join (左连接):返回包括左表中的所有记录和右表中连接字段相等的记录。 right join (右连接):返回包括右表中的所有记录和左表中连接字段相等的记录。 inner join (等值连接或者叫内连接):只返回两个表中连接字段相等的行。 full join (全外连接):返回左右表中所有的记录和左右表中连接字段相等的记录。
阅读次数: 本文累计被阅读 1000000 次